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SIGNIFICANCE AND EXPLANATION b

Much of the literature dealing with system failures assumes that

individual subsystems or components are stochastically independent. In this

report, some models that have been used for analyzing dependent failures are

examined and one new model is proposed. These models are of particular

interest in the probabilistic risk assessment of nuclear reactors.
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STOCHASTIC MODELS FOR COMMON FAILURES

OF COMPONENTSI

Bernard Harri s*

1. Introduction

In the probabilistic modeling of problems in systems reliability, the

possibility that failures of components may be stochastically dependent is

often neglected. In same areas of application, such as the safety of nu-

clear reactors, the treatment of such dependent failures has been the sub- K
ject of substantial controversy. This report is primarily motivated by the

treatment of dependent failures in the nuclear reliability literature.

Nevertheless, the models described herein have quite general applicability.

We begin this discussion with a summnary of the various modes of depen-

dent failures, as classified in the nuclear reliability literature. Unfor-

tunately, the terminology is not consistent and the same terms are defined

differently by the various writers. Further, the same mathematical model 6

%

may be an appropriate description of more than one type of dependent failure.

Specifically, a common mode failure is the simultaneous failure of more

than one component. In the engineering literature, (see, for example, the PRA

Procedures Guide [17]) it is assumed that the failures are not stochastically

independent. In the treatment that follows, no assumption about the stochastic

independence or lack thereof is made. This is a mathematical convenience, 4

since stochastic independence is a limiting case of stochastic dependence.

*Appeared as a University of Wisconsin-Madison, Department of statistics, 4.
Technical Report #727.

Sponsored by the United states Army under Contract No. DAAG29-80-C-0041. '4

-..

Ze-.1 -..



Wi 7 , -- 77T 7..77 -W

.- ,-'

2

Additional detailed general discussions of common mode failures and

their analyses may be found in Edwards and Watson [7] and the Deutsche

Risiko Studie - Kernkraftwerke [10).

A failure of a component or subsystem is said to be a propagating

failure when the failure changes the operating conditions, environments or

requirements in such a way as to cause the failure of other equipment. Here

we will be interpreting this definition in the manner of a classical mathe-

matical model of H. E. Daniels [4), which may be described as follows. En-

vision a cable consisting of m wires intertwined. This cable is supporting

a load and the load is distributed among the m wires. If I <k<m wires

break, then the load is redistributed among the remaining in-k wires, in-

. creasing the chance that they will rupture. It is in this sense that one can

model propagating failures, that is, the failure of some components increases

the stress on others. P. K. Sen [14,15] has studied statistical inference

for the model. A failure is said to be a common cause failure if more than one

component falls due to a single cause (usually assumed to be external to the

operating conditions of the equipment). Such common causes may be earthquakes,

fires, floods, volcanic eruptions, or lightning strikes.

Consequently, in modeling common cause failures, it is desirable to

introduce point processes for initiating events. Physically, an initiating

event is to be regarded as the external occurrence such as a flood, earthquake,

power outage, or fire,which can cause the failure of several components

simultaneously, due to the environmental stresses occasioned by its occurrence.

Another cause of simultaneous failures of several components occurs when

one device has several functions, so that its failure prevents each of these



3

individual functions from operating. Such might be the case if two cooling

tanks were fed by the same water supply pipe. These types of commnon mode

failures are known as shared-equipment dependencies and should be detectable

by an examination of the logic diagram of the system. Such possible common

mode failures, being dependent on the engineering design of the system, can be-

avoided by proper design and should not be of concern for this study.

Another possibility which may call for dependent modeling of component

%.

lifetimes is the presence of standby components. Such a component is called

into use when a specified component or specified components have failed.

Thus, it is plausible that a failure may be detected (or may occur, in the

case of demands) only after these other components have failed. Consequently,

the conditional waiting time until a failure in the standby component is ob-

served is different from the waiting time until failure if it were in primary

(non-standby) usage.

In Section 2, the square root bounding method is discussed. This method

was introduced in WASH-1400 [16] and has been severely criticized. The beta

factor model is described in Section 3. The common load model of ?4ankamo

[12,13] is described in Section 4. In Section 5, the binomial failure model -9

(see Veseley [18))is introduced and in Section 6, a shock model of Apostolakis

1]is defined. A model proposed by the author is presented in Section 7.

The square root bounding method, the beta factor model and the binomial failure

rate model are compared In Fleming and Raabe (9]. Concluding remarks are . 0
given in Section 8.

V~ ~~ W99-V '
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2. The Square Root Bounding Method.

S
The highly controversial method discussed in this section was introduced

in WASH-1400 (16, Appendix IV].

Let A,, i a 1,2,...,m be a finite sequence of events. The authors of
mfl

WASH-1400 wished to obtain a convenient approximation to P(r-1A). This

approximation should be sufficiently simple to permit statistical estimation

or to facilitate computation, or capable of determination from prior knowledge

of the properties of the events AI , or from engineering judgment. "

In WASH-1400, because of the intended application, it is assumed that.
the events A denote failures of components or subsystems.

We now describe the square root bounding method. Trivally, we have

Mm

III

1.1~i : P~r1 j.) 1 !5 j :5 m (2.1)

Let C, and C2  be arbitrary subsets of fl,2,...,ml . Then, in view of

the intended application, we assume

p((n A1it A z! P(n A1) (2.2)
leC1  JCC 2  eC1

Thus, (2.2) expresses the assumption that the failure of some components will

not decrease the probability of the failure of other components.

One employs (2.1) and (2.2) to obtain upper and lower bounds to

P( nAt). We denote these bounds by Ad and P(r) AI) respectively.

Thus,

d IN

. . . . 0.V.6 --
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m m m
L(rl A1)t P p(n Ai 5 IF(r- A1) (2.3) 4

and the approximation proposed in WASH-1400 is

M. m

(2.4)
~(n A1) (nA =nA

'11 =1 -"-1

hence the name "square root bounding method."~

The precise selection of the bounds appears to be not completely pre-

scribed by WASH-1400 and subsequent writing on this procedure. However, the

following appears to be the most coimonly employed choice.

Example 2.1 From (2.1), it follows by induction that

*
P((rA ) = min P(A ) (2.5)

1 t 1 1..''

To get a lower bound, for 1 5 k 5 m, we write

kC k- 1
e p s s P(Ai)P(A2 A)P(A 3 IAonA) ...P(A n tAi).

Letting Capa to 1) jek and cm 2l s ... 1,2cock-

20  we have, from (2.2), o(A lloA s b (Ad c e

* m I
P( n A) mn P(Ai). (2.6)

k -- 1'1.1

In particular, if P(A ) = P I ,2,,.,m, then ()

%-1 '" .

~ ~ r~&. ~ inL ~~'.Lk
.~ 9 9 -. 9..~ ~- -~l .4
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p M P(n Ai) <p (2.7)
* IJul

and

(t p(m+l)12 -
Ai) = ( (2.8) -;

if, in a system of m components, k have identical failure distribu-

tions (they need not be physically identical), we refer to these components

as being repeated components.

Example 2.2 Consider an m-component parallel system with m repeated

components. Let A1  be the event that the tth component fails. Then
ai

P(n A1 ) is the probability that the system fails and by the square root

bounding method, we obtain (2.8). In particular, for m = 2, (AlnA2) = p3 2.

We subsequently examine this special case in substantially more detail.

In G. T. Edwards and I. A. Watson (7], a modification of (2.3) and (2.4)

for k of m systems is given. This modification is based on an approxima-

tion to (2.3) and (2.4) which may be derived assuming low failure probabilities

and employing the $-factor method, which is discussed in Section 3.

We describe this for 2 of 3 systems.

A 2 of 3 system fails if two or more components fail. If the failures

of components are independent and identically distributed with failure prob-

ability p, then the probability that the system fails is

P p3 + 3p2(l p). (2.9)

.5-'.

V:
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Under the reasonable assumption that p Is small,

P - 3p2 . (2.10)

In Edwards and Watson, this is taken to be the lower bound P, however,
as is evident from (2.9) tIt is not a lower bound. The reasoning by which this

is taken as the lower bound is not given in Edwards and Watson. We can never-

theless justify it as an approximation to the lower bound for small p ,

using some simplified mathematical models to describe common failures. One

way to do this uses the beta factor model and will be treated in Section 3.

The upper bound given by Edwards and Watson is 1 = p , Which is less than

(2.9) for 1/2 < p < 1 and less than (2.10) for p > 1/3.

, The rationale given in WASH-1400 for the square root bounding method

(2.4) may be summarized as follows:

Let FX(x) be the log-normal distribution and let x be the solution

(in x) of Fx(x) = ot. Then (xax.M 1 1 is the median of the log-normal

distribution, for every 0 < a < 1. In WASH-1400, [16, App. IV, p. 19], this

Is described by saying that "a log-normal was used with its median positioned

at the center (geometric midpoint) of the range". In Edwards and Watson
VI

[7, p. 110], "these boundary values (i.e., (2.3)) define the range in which

the true system failure probability lies and in the WASH-1400 study a log-

normal probability distribution was assumed for the range of possible values.

Where the common-mode failure probability was not predominarnt in a system

reliability analysis a best estimate was obtained by calculating the median

of the log-normal distribution. This is the geometric mean of the range."

J.................. . .................. ....... .
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Since the range of the log-normal distribution is (0,), the above

statement does not have a precise interpretation as given. If it is

modified as follows,

lm (x( ))- iC L 0 -L

"- then the median M is characterizable in this manner.

However, as stated in WASH-1400, the assumption that the upper and lower

bound of the failure probabilities should be presumed to be symmetrically

located tail probabilities of the log-normal distribution is a completely

arbitrary assumption. There does not appear to be any logical basis for such

an assumption, other than the mathematical convenience of being able to combine

the bounds as in (2.4) for the purpose of obtaining a single value "midway"

between the two bounds in a well-defined sense.

The use of the log-normal distribution to model the distribution of un-

known probabilities is highly questionable. It is possible that a specific

Bayesian model with a prior distribution for unknown probabilities and range

(0,1) might be approximated by a suitable log-normal distribution. The

question of the errors introduced by such an approximation would then be a

matter for sensitivity analysis and will not be specifically examined in

this report.

The Lewis Report [11] was highly critical of the square root bounding

model. For the purposes of this report, it is worthwhile to summarize the

criticisms given in the Lewis report. The square root bounding method is

described as follows therein.

01l

.... f. .q p...... . ... ..
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The true system is too complex to calculate a failure probability.

Consequently a simple model is needed. Let M denote a possible model and

let P(M) denote the failure probability calculated using this model M. :

Assume that the probability that a given class of models A is correct is

representable by

Q(A)-- d Q(M). (2.11)
A

Then the failure probability

p- P(M)d Q(M), (2.12)

or' the mean probability with respect to the probability distribution Q(M)

.,*. In WASH-1400, Q(M) is taken to be the log-normal distributlun. Rather than

..I attempting to characterize the set of possible models, in WASH-1400, two

models, an upper bound model and a lower bound model are constructed. These

9.-Y.) are selected subjectively, presumably using engineering judgment. It is

V. further assumed that these two models are symmetrically situated, resulting

in the average P.

"The degree of arbitrariness in this procedure boggles the mind. The

lower bound gives a bound which is so low as to be absurd, and there is no

reason to believe that the upper bound is in any sense a symmetrically placed :9

upper bound. Nor is there any reason to believe that Q(M) is log-normal.

The results are very sensitive to these arbitrary choices."

A somewhat similar critique of the square root bounding method is given

by R. G. Easterling [6].

•V

. . ..
0-" 

" ' ' - ", ,t" k'A m~'''.''") ^ ." '* '.
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Assume that there is an event C such that P(AlnA2IC) is the upper

bound and P(AlnA2jZ) is the lower bound. Then
'.4

(AlnA2) " (P(AlnA2 C)P(AlnA2) 1)), (2.13)

2221
instead of

"",-'-.. P(A1 nA2) : P(AlnA2jC)P(C) + P(AlnA2! )P(t), (2.14) 3

a particular case of (2.12).

Somewhat more generally, let Ci, i - 1,2,...,N be a collection of such

events. We suppose that the Ci's are numerically valued and approximately
log-normally distributed, Let C5 and C95  be the lower and upper 5% points

respectively. Then

(P(AlnA21C5)P(AIn A21C9 5))' ' P(A nA2) (2.15)

and is asserted by R. G. Easterling to be the median of the distribution of

- P(AlnA2ICt). Easterling notes that this is not P(AlnA2) and also that

SP(A nA2 1Ci)P(Ci) - E(P(A~nA2lCi)) (2.16)

is the mean of the distribution ((2.14) is of course, the same as (2.12) with

P() replaced by P(AlnA2fCi)). Easterling further notes that the mean of

the log-normal distribution is larger than the median of the log-normal distri-

*4 bution.

%
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First it should be noted that (2.12) and (2.16) are quite different

assumptions than (2.4). Specifically, if M in (2.12) is log-normally distri-

buted, this places little restriction on the distribution of P(M). It is

P(M) and not Q(M) that is assumed to be log-normally distributed in

WASH-1400. While the log-normal distribution provides a weak justification

for (2.4), one may still regard (2.4) as a convenient interpolation between two

presumed extreme values. Thus it is of substantially greater interest to

ascertain how (2.4) behaves and further to ascertain when it is a reasonable

approximation.

For simplicity, we take m a 2. Let X1, X2  be two identically distri-

•. -:buted Bernoulli random variables with p(Xl,X 2) > 0, where p denotes the

,- correlation coefficient.

Then

SP{Xl l, X2  1) pp(l- p) + p2, (2.17)

, PX a 1} a P{X2 = 1} - p. (2.18)

The condition p > 0 is equivalent to (2.2), when m - 2 and P(A1 )

.1. P(A,2) = p. This can be seen as follows

P(X1 - 1, X2 * 1) - p2

P 
2

p(l - p)

from which, letting A1  ( (X1 
• 1), A2  (X2 311, we have

2 2.

.. .N .% . . . % . h. '*, . -. ..- _ .... .... '. -... ,, ,_.4 ,. ' . . '. ' :', ..



,i . . ...- ,, %ir. ll* *-I-

12

P{AIjA 2}  P{A2 1A1} = (pp(l-p) + p2)/p =oI-p) + p z p
*.-.:

with equality, if and only if p = 0.

". The square root bounding method, as illustrated in (2.8) gives the

estimate p3/2 for this case.

Consequently, we examine

H PH(p) = (p2 + Pp(1- p))/p3/2 (2.19)
-. *. .'

In particular, let a and B be two designated constants with a < 1, 8 > 1.

The objective is to determine the set

'%.%

DP(l,$) - {pJa H P(p) s 0, 0 < p < 11. (2.20)

•5 .., p

For p = 0, Ho0(p) - < 1, so that Ho(p) : B, 0 < p < 1; Ho(p) k a holds

whenever p k a2  Similarly, HI(p) = p > 1, so that Hl(p) a a, 0 < p < 1;

Hi(p) 1 8 holds whenever p k 1/82. For 0 < p < 1,

. H P(p) 5 0

is equivalent to

'b, p: <( p)p + p < p .

Let u ph

1 -p)u2 - Ou + p t 0 (2.21)

(-p)u 2 - au + p k 0 (2.22)

,% ,.% , . >:'

:'. ',','. ;.' '.;,'-, {t .* .-: ("'., ..',''-'.,-" -- :'::-:,< ---- * :-' 4:-.-.-:----...-,..-,.--.--

k ' " ." ,r ' , " """ ," ' "" " " . • """- ." ." '"- - -". .'"'-''"..'.." ." ." ." . "" "" "" ."...."
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Thus (2.2) holds whenever

2P

- <4(l - p <1 12.23)
2(1 -p) /

and (2.22) holds for all 0 < p < 1 whenever si < 4p(l- p). Otherwise

(2.22) holds whenever

0 < p S e - A - 4p(l -p) /2(1 -1p)2  (2.24)

and

" ((c l + 2, 4p(l -p))/2(l - p))2 < p < 1. (2.25)

In practice, one will often take cx - 1/8 and values of a suggested

by the intended application in WASH-1400 are TU and 10. These are

natural due to the interest in measuring errors to orders of magnitude.

We can summarize these results for 0=A and a = 10 as follows:

For V /10, p > .026, (2.21) and (2.22) are satisfied for

D (ct,B) = ('TO"- / 40(-P112(l-p) < p < l.

For p < .026,

0 (a,S) (( /10- A:- ('TT- - /2(1-p) s p 5 (/,T- V.1 4p(=-p)/2(l- p))

T ((IT + V I- 4P I - ))/2(1 -p)) p < 11

,[,,¢,, ,,,,j ,, , ,. ,.: ,.'. ..:,,..;...'.';.;.-..:.....-..-.....:...................................-.....-......:........
S* **.. . . .. . . . ..... ,_.. . •....o•...,..... .. ;.,...,....,.. -'..........
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For - 10, p > .0025,

"Dl(s,8) " {(10 - ,rl0'-4p(l-)12l -p) s p < I.
P

For p < .0025,

D p(la,) - {(10 - O-4p(1-p)l/2(l - p) ! p < (.1 - v.01 - 4p( -p)/2(l -p)

U ((.1 + /.01"- 4p(TI-Fp/2(l -p)) p < 1).

For very small values of p , the lower level of 0 (cc,$) is approximately
P

p/, T when ct=A7T-, B-At and p/10 when a 1/10, 8 - 10.

I It is also worthwhile to estimate the difference between the two quanti-

ties, that is, consider

&p W . p2 + pp(1 -p) - p3/2

for small values of p and small values of p . Specifically, let

p cp*, 0 s o. Then it is easily seen that as p 0 0,

cp C,' 0 s a < 1/2 _
p3/2 ,

(c-p1  a * 1/2, c ta 1Al(p)
M p 2  a- 1/2, c-I

.p 1/2 < a (2.26)

Finally, note that the square root bounding method yields conservative

estimates whenever H (p) < 1.
p

oV 0'.D ..'S . ,,,-,- - -, -.- ,,-., .-., • . ..-,.. . . . . .'-
-,4 , -.- . , , .', - ,. ,. - -. . . . . . .,. . .. .. .



The above discussion was restricted to parallel (redundant) systems of

two components. This can be extended to k of m systems, however, at a

4 "substantial increase in complexity, which may serve to obscure the conclusions.

2T~i 3. The Beta Factor Mlodel

The beta factor model is basically a parametrization of binomial or

Poisson models in which the failures are divided into two classes, individual

and common failures. t denotes the expected proportion of failures which

are common failures.

Thus, for a Poisson process with intensity X , we let X 1  denote the

expected number of individual failures per unit time and let Xc denote the

expected number of common failures per unit time. Then

X " A1 + Acs 8 = c/A, 0 < 8 : 1 . (3.1)

-,
C c

A description of the beta factor model is given in Edwards and Watson [7].

The technique is due to Fleming [8] and is utilized in Dhillon and Proctor

.5].

To apply the beta factor model to the life testing model for systems

reliability, one may proceed as follows:

Let X,1 2,...,Xm be identically distributed random variables with

29....

P(X i  x}-ex, x>0. (3.2)

Xj, it 1,2,...,m is to be identified as the waiting time to failure of the

xlm-th component of a system.

ai.

%
.p-~ *.- .*.. ---. *.. 7
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Example 3.1. Consider a parallel system of two components. If indepen-

-. , dent, the probability that the system does not fail on or before time T is

R(T)2e - , X > O, T > O. (3.3)

Let PI(T) be the probability that an individual failure of a specified

* , component does not occur on or before T • It is assumed that individual

failures are independent. Let Pc(T) be the probability that a common failure

does not occur before time T . Then
.4

R(T) Pc(T){(PI(T)IPc(T)) + (2PI(T)(1- PI(T))IPc(T))}. (3.4)

upon assuming that the individual failures are conditionally independent, given

that no common failure has occurred. In Edwards and Watson [7], the further

simplifying assumption that common failures and individual failures are inde-

pendent is made, resulting in

R(T) - Pc(T){P2(T) + 2PI(T)(1 -PI(T))} , (3.5)

Now using the beta factor model and simplifying, we get
.4,,

R(T) Pc(T){2P (T) - P (T)), (3.6)

where

Pc(T) e-B), PI(T) - e•(l)XT (3.7)



17

Thus

A R(T) - 2e" T e" XT+8XT (3.8)

If 0 0, that is, there are no common failures, then (3.8) reduces to

(3.3). If B 1, that is, all failures are common failures, then R(T) - exT,

since both components act as a unit (single component).

This can be extended to more complicated systems at the cost of in-

creased complexity. A simplified treatment is given in Edwards and Watson [7],

where it is assumed that the only common failures are those in which all com-

ponents fail, a somewhat stringent assumption. A model which does not require

this assumption is described in Section 5.

In the engineering literature, it is customary to approximate life testing

formulas by assuming that XT -1 0, in which case (3.8) is approximated by

R(T) - I - BXT • (3.9)

This reasoning is applied to the square root bounding model by Edwards

and Watson [7]. In particular consider a 2 of 3 system. That is, a

system which operates whenever two or more of the three components function.

Then, from (3.5),

R(T) - Pc(T){3 pI(T)(1 -P(T)) + PI(T)}

. e-BXT{3 e-2(l-B)XT)(l.e-(l-O)XT) + 3(1-) )
+ e

- 3 e-(2"$)XTT3 e-(3"2a)XT + e"(3"20)XT

- 3 e" (2-O)AT  2 e" (3"28 )XT  (3.10)

%I

". • - - - I . . . . . . .
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Naturally, for 8 " 0,

* *R(T) = 3e
"2XT - 2e

3XT , (3.11)

in agreement with (2.9) for p = exT . For a a 1,

S,..' R(T) = 3e
" T - 2e";kT = e" T , (3.12)

since there is effectively only one component.

Using the approximation obtained by letting XT * 0

R(T) - 3(1 - (2-8)XT) - 2(1 - (3-28)XT) 1 -OXT (3.13)

Note that for $ = 0, the failure probability, 1-R(T), does not have

a nontrivial approximation given by (3.13). This can be rectified by utilizing

the second order terms in (3.11), obtaining

R(T) -I + 3(4)2T/2) 2(9X2 T2/2) 1 - 3X 2T2

so that

1- R(T) ~ 3X2T2 ,

Ain agreement with (2.10).

Z7 1- -
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4. The Common Load Model

T. Mankamo [12] proposed the following model. Assume that the m com-

ponents have independent and identically distributed random resistances

RioR,.*..R . We denote the probability density function of these resistances

by fR(x). A random stress S with probability density function gs(x) occurs.
* Then the event that exactly k of the components fail simultaneously, r

k- 1,2,...,m is given by

({Rk] rk+ll , (4.1)

where R~l ~~~..~R ae [1]  R[2] !5 ... !s REm ]  are the ordered resistances. S is presumed*1"

to be independent of R1, R2 ,...,R m .

A given component is assumed to fail whenever R < S . Thus

P{R<S} - fR(x)gS(y)dxdy . (4.2)

This may be written

o FR(Y)gs(Y)dy = Es(R) ( (4.3)

where FR(y) is the cumulative distribution function of the resistance and

a Es(R) denotes the expected value of R computed with respect to the prob-

ability distribution of the stress.

It follows that the probability that k components fail when subjected

to the random stress S is

", , , , .,+,.. ..,. ..;.. .., _ .. . e. .<. ,. . , . . . . . .
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SPm (k) T o ((FRy)kl - FR(y)) kgs(y)dY (4.4)

Mankamo illustrates this model under the assumption that both R and

S are normally distributed and also under the assumption that both R and

S have the log-normal distribution.

For the normal distribution model with parameters VR' PS' aR, a(,

Mankamo proposed the quantity

(45
.RSaSi (4.5)

as a measure of the dependence of component failures. A measure based on the

relative size of the two variances is logical. If /a is very small,

then all components will tend to fail simultaneously or function simultaneously

after being subjected to the random stress S . If / is large, then the

knowledge that a given component has failed provides little information about

the failures of other components. The particular form of YRS chosen by

fankamo has a range 0 q YRS s 1, which presumably is found to be intuitively

useful.

-ankamo suggests defining a parameter nk by

"1 n kSPm(k) _ (Pm()) . (4.6)

This is an appealing parameterization, since it provides a number nk which

describes the "effective redundancy," or equivalently, m-nk describes the

loss in redundancy due to common failures.

,,, '. .,'.,V ,V,; .V '. -,. .... . ,....... . . ... . . . .,,; ... ..,- ... - .,,. ,. . .., ,. . .
-',.( ' P e" . .'. •. . j . j..v'A:-:- - ' .. .,• =* . . •• ,'.a, ,* ,,2,2 , '" , ., , , .. ., .- . .. . .-.. .- , .. .. . ..,- . . . -- .. . . -. .. . - - . ... , ,-.-. . ,
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Mankamo says that the common load model Is difficult to utilize when

failure rates rather than failures on demand are involved. He suggests de-

fining the probability of a common failure of k components by

Pk(T) (I eXT)nk ()

where nk is determined by (4.6). The customary approximation (3.9) gives

Pk(T) ~ (XT) . (4.8)

5. The Binomial Failure Rate Model

This model was proposed by W. E. Vesely [18]. An extensive discussion

of this model is given by C. L. Atwood [2]. A description of this model

follows.

tet U a 1 if the ith component fails and 0 if the ith component
iR

functions, i - 1,2,...,n. Then, the state of the system is given by a vector

- (u 1 , u . . . . , um) , u1 - 0,1. There are 2m
- I possible outcomes in which

one or more components fail simultaneously. For each u let

f(t) Xe "x) t, t>", X-> (5.1)

be the probability density function of the waiting time for the failure

combination j

U
Let w *- u1  be the weight of the vector u. Then define

.4 -

.00-. 
%1'-



22I' mA, + p(mpqm-l), w(i) 1.

U'3 1j~piqm't , w((u t (5.2)

where 0 < p < 1, q = 1 - p, x > O, p> o, m>2. Consequently, we simplify

. notation, writing XU X A1, j = 1,2,...,m, where i = w(U).

Thus, for a parallel system of two components, the system fails by time

T if either both of (0,1) and (1,0) occur or if the combination (1,1)

occurs. Thus the probability that the system fails is

(1 - e )XT)2 + (1 -Xe 2T) ~ (,IT) 2 + , 2T, (5.3)

the approximation being obtained using the reasoning employed in deriving
..'

(3.9). The common failure rate is

m 5-

I-+ J X2 (5.4)

A detailed discussion of this model and procedures for statistical esti-

mation of the parameters may be found in C. L. Atwood [2). The intuitive

justification for the model (5.1) and (5.2) may be stated as follows. The

individual components have a lifetime distribution determined by the exponential

distribution with parameter A . Shocks also arrive in accordance with a

Poisson process with intensity Vi. As each shock occurs, the individual

components fail independently with probability p . From (5.3) we see that

no provision is made for down time, that is, it is assumed that all failures p

are repaired instantly.

.%.

-, 5,
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. 6. A Shock Model

G. Apostolakis [1] proposed the following model. Each of m components

has an independent exponentially distributed life distribution with common

parameter X . In addition, shocks arrive in accordance with a Poisson

process, stochastically independent of the above random tifetimes. This

Poisson process has parameter X c and each shock induces the simultaneous

failure of all m components. Thus, there are two possible modes of failure

-
)  of a given set of k < m components before a specified time T . The k

components can fail individually, in accordance with the lifetime distribution

or they can be subjected to a shock inducing a common failure. Thus, the

reliability of a parallel system of k components is

R(T) - [I-(-e AT)k ][ cTA . (6.1)

Similarly, for a k of m system,
i i

R(T) = ec T  (m)e rXT(1 - eTm-r (6.2)
r -k "

Write

m ) rXT 0 -Tm-r k-i r. (63

k- I -m r XT (I  _ (.m T ) k-1 - XT)m-.k+l

" C-)e k( eTt~ (kl; lT( e ) (1 + ( )

r rO

V

)( A (I-k~l" + OO(AT)). (6.4)
. k-I.r o , '
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Thus as XcT  O,

R(T)~ (I- X T)(1 (kl)(XT)' k+1) (6.5)
C I

In this form, it is possible to determine how significant the probability

of common failure is relative to the overall reliability. Apostolakis [1)

gave a representation in terms of the hazard function of the k of m

system lifetime.

a..or

7. A Suggested Common Failure Model.

The mode' described here was proposed by the author and is motivated

by some of his work [3) on the stress-strength models in reliability. This

model is an extension of the common load model of Mankamo [12, 13] and is also

related to the binomial failure model, but is more fundamental than that

model, in a probabilistic sense.

Specifically, the model is defined as follows.

Let N(t) be the number of shocks arriving on or before t, 0 : t s T.

If n(t) shocks have arrived In [0,T], we designate the arrival times by

0 < t < ... < tn < T. The shocks are assumed to have random magnitudes

X(tl),X(t2),...,X(tn It is further assumed that X(tl),X(t2),...,X(tn)

are independent and identically distributed. Consider a system of m

components. To each component, we associate independent random variables

YI,Y2,...,Ym. Component i is said to fail at time tj whenever X(tj) > Y

i - 1,2,...,m, It is convenient to order (Y1,Y2,...Y replacing them by
2 m

the random variables 0 ! Y [I Y[2] :... sY[m]. Then, r components fail

simultaneously at time t whenever

% %

• % . % % ' . . "* ", o . - . a . • . \ . .
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-r) <-(tj) Y(r+l r 0,1,...,m (7.1)

where Y [03 0, Y m+l I

Within this structure, several specializations which are appropriate

-- for a number of potential applications can be prescribed.

In some instances, one may wish to assume that Y

-. are known. This information may be obtained from non-destructive testing

bor from extensive knowledge of physical properties of the components. This

model is closely related to the model described in i. D. Church and B.

Harris [3].

Another modification of interest is the following. The random variables

Yi i - 1,2,...,m, which represent the strengths or resistances of the indi-

viduals components are subject to "wear out." This can be accomplished by

defining a family of random functions Yi(t) I = 1,2,...,m, where forJ '..

ti < t 2 , Y(tl) < Yt(t 2) and Yi(t) - 0 as t *w . The precise choice of

these functions would require specific knowledge of the physical character-

istics of the components.

Further, it may be appropriate to assumethat the shocks have a degrading

effect. That is, if they do not cause failure of a component, it may weaken

that component so that the next shock will be more likely to induce a failure.

This may be described by introducing functions as follows:

- Y(t J+ ) "HYI(t j),X(t P (7.2)

'€.~~~~~~~~ %,,. .- -.. -
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where Yi(t +) < Y(tQ. To characterize the functions (7.2), engineering

models for fatigue and shock damage are needed and such models will depend

on the precise nature of the components.

Some specific illustrations follow.

Exampl-e 7.1. Assume that Y1 - Yl' Y2 = Y2"'"Ym Ym are known

and that the waiting times between shocks are independent exponentially

distributed with common parameter A. Assume further that X(tl),X(t2),...

X(t) are independent identically distributed with probability density

function

f ::x(x) s e"- x  x > 0, 0 > 0.

With no loss of generality, we can assume Yl < Y2 < ... <ym" Then let Z

be the number of components failing at time t Accordingly,

PZJ = r) = e-BYr - eBYr+ . r - 0,1,...,., (7.3)

where Yo 0, ym+l = C"

Then the probability of a common cause failure in [O,TJ is
P

Pc(T) - ]-P(Z1  I 1, Z2 < 1,...) . (7.4)
-5.2

In (7.4), there is a tacit assumption that failed components are "instantaneously"

replaced or repaired. Thus,

'%'1 1 '' """ " ' "* .,*"'
-

* . .... .. . .... . . . . . .
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27

Pc(T) 1 P(N(T) J} P(X(ti) :Y20 1 1,2, ...,9j}

I~l (X),j"T (I e'BY2) J

JUO
-'~ ((XT)( - eYT ie)

T) e Y2

.0

:':'L" 1 ";j ((XT)(1 - e'B2 )+  e XT  '-

'1: ': 1 "Te'BY2

Thus, for this very special model, one does get a "nice" answer.

One can extend (7.4) and (7.5) easily to calculate the probability that

*I or more components fail simultaneously.

8. Concluding Remarks.

The present report described several possible models for common failures,

one of which is believed to be new. With the exception of the square root

bounding method, all appear to be plausible models and presumably can be -

regarded as approximations to reality on probabilistic grounds, under suitable

physical conditions. Consequently, one now needs to extend the probabilistic

models described herein to systems cormonly encountered in practice. Then

one should compare the models with existing data on common failures. Finally,

statistical inference for these models needs to be studied. These investi-

Sations are to be considered in future reports.
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